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Abstract. In this paper we propose a CNN architecture for semantic
image segmentation. We introduce a new “bilateral inception” module
that can be inserted in existing CNN architectures and performs bilateral
filtering, at multiple feature-scales, between superpixels in an image. The
feature spaces for bilateral filtering and other parameters of the module
are learned end-to-end using standard backpropagation techniques. The
bilateral inception module addresses two issues that arise with general
CNN segmentation architectures. First, this module propagates infor-
mation between (super) pixels while respecting image edges, thus using
the structured information of the problem for improved results. Second,
the layer recovers a full resolution segmentation result from the lower
resolution solution of a CNN. In the experiments, we modify several ex-
isting CNN architectures by inserting our inception module between the
last CNN (1 x 1 convolution) layers. Empirical results on three different
datasets show reliable improvements not only in comparison to the base-
line networks, but also in comparison to several dense-pixel prediction
techniques such as CRFs, while being competitive in time.

1 Introduction

In this paper we propose a CNN architecture for semantic image segmentation.
Given an image Z = (z1,...,2y) with N pixels z; the task of semantic segmen-
tation is to infer a labeling Y = (y1,...,yn) with a label y; € ) for every pixel.
This problem can be naturally formulated as a structured prediction problem
g : T — Y. Empirical performance is measured by comparing Y to a human
labeled Y* via a loss function A(Y,Y ™), e.g., with the Intersection over Union
(IoU) or pixel-wise Hamming Loss.

A direct way to approach this problem would be to ignore the structure of
the output variable Y and train a classifier that predicts the class membership
of the center pixel of a given image patch. This procedure reduces the problem
to a standard multi-class classification problem and allows the use of standard
learning algorithms. The resulting classifier is then evaluated at every possible

* The first two authors contribute equally to this work.
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Fig. 1. Illustration of CNN layout. We insert the Bilateral Inception (BI) modules
between the FC (1 x 1 convolution) layers found in most networks thus removing the
necessity of further up-scaling algorithms. Bilateral Inception modules also propagate
information between distant pixels based on their spatial and color similarity and work
better than other label propagation approaches.

patch in a sliding window fashion (or using coarse-to-fine strategies) to yield a
full segmentation of the image. With high capacity models and large amounts
of training data this approach would be sufficient, given that the loss decom-
poses over the pixels. Such a per-pixel approach ignores the relationship between
the variables (y1,...,yn), which are not i.i.d. since there is an underlying com-
mon image. Therefore, besides learning discriminative per-pixel classifiers, most
segmentation approaches further encode the output relationship of Y. A domi-
nating approach is to use Conditional Random Fields (CRF) [1], which allows
an elegant and principled way to combine single pixel predictions and shared
structure through unary, pairwise and higher order factors.

What relates the outputs (y1,...,yn)? The common hypothesis that we use
in this paper could be summarized as: Pixels that are spatially and photomet-
rically similar are more likely to have the same label. Particularly if two pixels
x;,x; are close in the image and have similar RGB values, then their corre-
sponding labels y;,y; will most likely be the same. The most prominent exam-
ple of spatial similarity encoded in a CRF is the Potts model (Ising model for
the binary case). The work of [2] described a densely connected pairwise CRF
(DenseCRF) that includes pairwise factors encoding both spatial and photo-
metric similarity. The DenseCRF has been used in many recent works on image
segmentation which find also empirically improved results over pure pixel-wise
CNN classifiers [3,4,5,6].

In this paper, we implement the above-mentioned hypothesis of photometri-
cally similar and near-by pixels share common labels, by designing a new “Bi-
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lateral Inception” (BI) module that can be inserted before/after the last 1 x 1
convolution layers (which we refer to as ‘FC’ layers - ‘Fully-Connected’ in the
original image classification network) of the standard segmentation CNN archi-
tectures. The bilateral inception module does edge-aware information propaga-
tion across different spatial CNN units of the previous FC layer. Instead of using
the spatial grid-layout that is common in CNNs, we incorporate the superpixel-
layout for information propagation. The information propagation is performed
using standard bilateral filters with Gaussian kernels, at different feature scales.
This construction is inspired by [7,8]. Feature spaces and other parameters of the
modules can be learned end-to-end using standard backpropagation techniques.
The application of superpixels reduces the number of necessary computations
and implements a long-range edge-aware inference between different superpix-
els. Moreover, since superpixels provides an output at the full image resolution
it removes the need for any additional post-processing step.

We introduce BI modules in the CNN segmentation models of [3,5,4]. See
Fig. 1 for an illustration. This achieves better segmentation results on all three
datasets we experimented with than the proposed interpolation/inference tech-
niques of DenseCRF [4,3] while being faster. Moreover, the results compare fa-
vorably against some recently proposed dense pixel prediction techniques. As
illustrated in Fig. 1, the BI modules provides an alternative approach to com-
monly used up-sampling and CRF techniques.

2 Related Work

The literature on semantic segmentation is large and therefore we will limit our
discussion to those works that perform segmentation with CNNs and discuss the
different ways to encode the output structure.

A natural combination of CNNs and CRFs is to use the CNN as unary po-
tential and combine it with a CRF that also includes pairwise or higher order
factors. For instance [3,4] observed large improvements in pixel accuracy when
combining a DenseCRF [2] with a CNN. The mean-field steps of the Dense-
CRF can be learned and back-propagated as noted by [9] and implemented
by [5,10,11,12] for semantic segmentation and [13] for human pose estimation.
The works of [14,15,16] use CNNs also in pairwise and higher order factors for
more expressiveness. The recent work of [6] replaced the costly DenseCRF with
a faster domain transform performing smoothing filtering while predicting the
image edge maps at the same time. Our work was inspired by DenseCRF ap-
proaches but with the aim to replace the expensive mean-field inference. Instead
of propagating information across unaries obtained by a CNN, we aim to do the
edge-aware information propagation across intermediate representations of the
CNN. Experiments on different datasets indicate that the proposed approach
generally gives better results in comparison to DenseCRF while being faster.

A second group of works aims to inject the structural knowledge in inter-
mediate CNN representations by using structural layers among CNN internal
layers. The deconvolution layers model from [17] are being widely used for local
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propagation of information. They are computationally efficient and are used in
segmentation networks, for e.g. [18]. They are however limited to small receptive
fields. Another architecture proposed in [19] uses spatial pyramid pooling layers
to max-pool over different spatial scales. The work of [20] proposed specialized
structural layers such as normalized-cut layers with matrix back-propagation
techniques. All these works have either fixed local receptive fields and/or have
their complexity increasing exponentially with longer range pixel connections.
Our technique allows for modeling long range (super-) pixel dependencies with-
out compromising the computational efficiency. A very recent work [21] proposed
the use of dilated convolutions for propagating multi-scale contextual informa-
tion among CNN units.

A contribution of this work is to define convolutions over superpixels by defin-
ing connectivity among them. In [22], a method to use superpixels inside CNNs
has been proposed by re-arranging superpixels based on their features. The tech-
nique proposed here is more generic and alleviates the need for rearranging su-
perpixels. A method to filter irregularly sampled data has been developed in [23]
which may be applicable to superpixel convolutions. The difference being that
their method requires a pre-defined graph structure for every example/image
separately while our approach directly works on superpixels. We experimented
with Isomap embeddings [24] of superpixels but for speed reasons opted for
the more efficient kernels presented in this paper. The work of [25] extracted
multi-scale features at each superpixel and perform semantic segmentation by
classifying each superpixel independently. In contrast, we propagate information
across superpixels by using bilateral filters with learned feature spaces.

Another core contribution of this work is the end-to-end trained bilateral
filtering module. Several recent works on bilateral filtering [26,27,28,10] back-
propagate through permutohedral lattice approximation [29], to either learn the
filter parameters [28,10] or do optimization in the bilateral space [26,27]. Most of
the existing works on bilateral filtering use pre-defined feature spaces. In [30], the
feature spaces for bilateral filtering are obtained via a non-parametric embedding
into an Euclidean space. In contrast, by explicitly computing the bilateral filter
kernel, we are able to back-propagate through features, thereby learning the
task-specific feature spaces for bilateral filters through integration into end-to-
end trainable CNNs.

3 Superpixel Convolutional Networks

We first formally introduce superpixels in Sec. 3.1 before we describe the bilateral
inception modules in Sec. 3.2.

3.1 Superpixels

The term superpizel refers to a set of n; pixels S; = {t1,...,t,,} with t; €
{1,..., N} pixels. We use a set of M superpixels S = {S1,...,Sy} that are
disjoint S; N'S; = 0, Vi, j and decompose the image, U;S; = T.
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Superpixels have long been used for image segmentation in many previous
works, e.g. [31,32,33,25], as they provide a reduction of the problem size. Instead
of predicting a label y; for every pixel x;, the classifier predicts a label y; per
superpixel S; and extends this label to all pixels within. A superpixel algorithm
can pre-group pixels based on spatial and photometric similarity, reducing the
number of elements and also thereby regularizing the problem in a meaningful
way. The downside is that superpixels introduce a quantization error whenever
pixels within one segment have different ground truth label assignments.

Figure 2 shows the superpixel quanti-
zation effect with the best achievable per-
formance as a function in the number of 98 1

superpixels, on two different segmentation qé -

datasets: PascalVOC [34] and Materials in E%f

Context [4]. We find that the quantiza- »;:94, )

tion effect is small compared to the cur- e —IoU Score (VOC12)

rent best segmentation performance. Prac- g 921 _gﬁi'sﬁ)fcc&f?:cyy(zﬁﬁg)
tically, we use the SLIC superpixels [35] for o) ---Pixel Accuracy (MINC)
their runtime and [36] for their lower quan- 500 1000 1500
tization error to decompose the image into Avg. Number of Superpixels

superpixels. For details of the algorithms,

please refer to the respective papers. We Fig.2. Superpixel Quantization
use publicly-available real-time GPU im- Error. Best a?hievable .Segmentation
plementation of SLIC, called gSLICr [37], performance with a varying number of
which runs at over 250Hz per second. And  *ECrPIEER 01 A 0L ke
the publicly available Dollar superpixels mentation [4] datasets. &
code [36] computes a super-pixelization for

a 400 x 500 image in about 300ms using an Intel Xeon 3.33GHz CPU.

3.2 Bilateral Inceptions

Next, we describe the Bilateral Inception Module (BI) that performs Gaussian
Bilateral Filtering on multiple scales of the representations within a CNN. The
BI module can be inserted in between layers of existing CNN architectures.

Bilateral Filtering: We first describe the Gaussian bilateral filtering, the
building block of the BI module. A visualisation of the necessary computations is
shown in Fig. 3. Given the previous layer CNN activations z € RF*¢ that is P
points and C filter responses. With z. € R we denote the vector of activations
of filter c. Additionally we have for every point j a feature vector f; € RP.
This denotes its spatial position (D = 2, not necessarily a grid), position and
RGB color (D = 5), or others. Separate from the input points with features
F;, = {f1,...,fp} we have Q output points with features F,,;. These can be the
same set of points, but also fewer (Q < P), equal (Q = P), or more (Q > P)
points. For example we can filter a 10 x 10 grid (P = 100) and produce the result
on a 50 x 50 grid (Q = 2500) or vice versa.

The bilateral filtered result will be denoted as z € RP*XC. We apply the
same Gaussian bilateral filter to every channel ¢ separately. A filter has two free
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Fig. 3. Computation flow of the Gaussian Bilateral Filtering. We implemented
the bilateral convolution with five separate computation blocks. A and 6 are the free
parameters.

parameters: the filter specific scale § € R and the global feature transformation
parameters A € RP*P_ For A, a more general scaling could be applied using
more features or a separate CNN. Technically the bilateral filtering amounts to
a matrix-vector multiplication Ve:

ic = K(evAaFin7Fout)Zm (1)
where K € R®*F and values for f; € F, ., fi € Fin:

exp(—0||Af; — Af;|?)

K; ;= . 2
IS exp(—6] AT, — Af,2) @)

From a kernel learning terminology, K is nothing but a Gaussian Gram ma-
trix and it is symmetric if F;,, = F,,;. We implemented this filtering in Caffe [38]
using different layers as depicted in Fig. 3. While approximate computations of
Kz, exist and have improved runtime [29,39,40,41], we chose an explicit com-
putation of K due to its small size. Our implementation makes use of GPU
and the intermediate pairwise similarity computations are re-used across differ-
ent modules. The entire runtime is only a fraction of the CNN runtime, but of
course applications to larger values of P and @ would require aforementioned
algorithmic speed-ups.

Bilateral Inception Module: The bilateral inception module (BI) is a
weighted combination of different bilateral filters. We combine the output of
H different filter kernels K, with different scales 81, ..., . All kernels use the
same feature transformation A which allows for easier pre-computation of pair-
wise difference and avoids an over-parametrization of the filters. The outputs of
different filters z" are combined linearly to produce z:

Zo=» whal, (3)
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Fig. 4. Visualization of a Bilateral Inception (BI) Module. The unit activations
z are passed through several bilateral filters defined over different feature spaces. The
result is linearly combined to z and passed on to the next network layer. Also shown are
sample filtered superpixel images using bilateral filters defined over different example
feature spaces. (u,v) correspond to position and (r,g,b) correspond to color features.

using individual weights w” per scale #" and channel c. The weights w € R¥*¢
are learned using error-backpropagation. The result of the inception module has
C channels for every of its @ points, thus z € R®*¢. The inception module is
schematically illustrated in Fig. 4. In short, information from CNN layers below
is filtered using bilateral filters defined in transformed feature space (Af). Most
operations in the inception module are parallelizable resulting in fast runtimes
on a GPU. In this work, inspired from the DenseCRF architecture from [2], we
used pairs of BI modules: one with position features (u,v) and another with
both position and colour features (u,v,r, g,b), each with multiple scales {6"}.
Motivation and Comparison to DenseCRF: A BI module filters the
activations of a CNN layer. Contrast this with the use of a DenseCRF on the
CNN output. At that point the fine-grained information that intermediate CNN
layers represent has been condensed already to a low-dimensional vector repre-
senting beliefs over labels. Using a mean-field update is propagating information
between these beliefs. Similar behaviour is obtained using the BI modules but on
different scales (using multiple different filters K (6")) and on the intermediate
CNN activations z. Since in the end, the to-be-predicted pixels are not i.i.d.,
this blurring leads to better performance both when using a bilateral filter as an
approximate message passing step of a DenseCRF as well in the system outlined
here. Both attempts are encoding prior knowledge about the problem, namely
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that pixels close in position and color are likely to have the same label. There-
fore such pixels can also have the same intermediate representation. Consider
one would average CNN representations for all pixels that have the same ground
truth label. This would result in an intermediate CNN representation that would
be very easy to classify for the later layers.

3.3 Superpixel Convolutions

The bilateral inception module allows to change how information is stored in
the higher level of a CNN. This is where the superpixels are used. Instead of
storing information on a fixed grid, we compute for every image, superpixels .S
and use the mean color and position of their included pixels as features. We can
insert bilateral inception modules to change from grid representations to super-
pixel representations and vice versa. Inception modules in between superpixel
layers convolve the unit activations between all superpixels depending on their
distance in the feature space. This retains all properties of the bilateral filter,
superpixels that are spatially close and have a similar mean color will have a
stronger influence on each other.

Superpixels are not the only choice, in principle one can also sample random
points from the image and use them as intermediate representations. We are us-
ing superpixels for computational reasons, since they can be used to propagate
label information to the full image resolution. Other interpolation techniques are
possible, including the well known bilinear interpolation, up-convolution net-
works [17], and DenseCRFs [2]. The quantization error mentioned in Sec. 3.1
only enters because the superpixels are used for interpolation. Also note that a
fixed grid, that is independent of the image is a hard choice of where informa-
tion should be stored. One could in principle evaluate the CNN densely, at all
possible spatial locations, but we found that this resulted in poor performance
compared to interpolation methods.

Backpropagation and Training. All free parameters of the inception mod-
ule w, {#"} and A are learned via backpropagation. We also backpropagate
the error with respect to the module inputs thereby enabling the integration of
our inception modules inside CNN frameworks without breaking the end-to-end
learning paradigm. As shown in Fig. 3, the bilateral filtering can be decomposed
into 5 different sub-layers. Derivatives with respect to the open parameters are
obtained by the corresponding layer and standard backpropagation through the
directed acyclic graph. For example, A is optimized by back-propagating gra-
dients through 1 x 1 convolution. Derivatives for non-standard layers (pairwise
similarity, matrix multiplication) are straight forward to obtain using matrix cal-
culus. To let different filters learn the information propagation at different scales,
we initialized {#"} with well separated scalar values (e.g. {1,0.7,0.3,...}). The
learning is performed using Adam stochastic optimization method [42]. The im-
plementation is done in Caffe neural network framework [38], and the code is
available online at http://segmentation.is.tuebingen.mpg.de.
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Fig. 5. Semantic Segmentation. Example results of semantic segmentation on
Pascal VOC12 dataset. (d) depicts the DeepLab CNN result, (¢) CNN + 10 steps
of mean-field inference, (f) result obtained with bilateral inception (BI) modules
(BIs(2)+BI7(6)) between FC layers.

4 Experiments

We study the effect of inserting and learning bilateral inception modules in vari-

ous existing CNN architectures. As a testbed we perform experiments on seman-

tic segmentation using the Pascal VOC2012 segmentation benchmark dataset [34],
Cityscapes street scene dataset [43] and on material segmentation using the Ma-

terials in Context (MINC) dataset from [4]. We take different CNN architectures

from the works of [3,5,4] and insert the inception modules before and/or after the

spatial FC layers. In the supplementary, we presented some quantitative results

with approximate bilateral filtering using the permutohedral lattice [29].

4.1 Semantic Segmentation

We first use the Pascal VOC12 segmentation dataset [34] with 21 object classes.
For all experiments on VOC2012, we train using the extended training set of
10581 images collected by [44]. Following [5], we use a reduced validation set of
346 images for validation. We experiment on two different network architectures,
(a) DeepLab model from [3] which uses CNN followed by DenseCRF and (b)
CRFasRNN model from [5] which uses CNN with deconvolution layers followed
by DenseCRF trained end-to-end.

DeepLab We use the publicly available state-of-the-art pre-trained CNN mod-
els from [3]. We use the DeepLab-LargeFOV variant as a base architecture and
refer to it as ‘DeepLab’. The DeepLab CNN model produces a lower resolution
prediction (%x) which is then bilinearly interpolated to the input image reso-
lution. The original models have been fine-tuned using both the MSCOCO [45]
and the extended VOC [44] datasets. Next, we describe modifications to these

models and show performance improvements in terms of both IoU and runtimes.
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We add inception modules af- /2
ter different FC layers in the
original model and remove the

Training IoU Runtime

DeepLab [3] 68.9 145ms
With BI modules

DenseCRF post processing. For Big(2) only BI  70.8  +20
this dataset, we use 1000 SLIC Bls(2) BI+FC 715 +20
. . Bl (6) BI+FC 729  +45
superpixels [35,37]. The incep- BI,(6) BI+FC 731 +50
tion modules after FCg, FC7; and  Bls(10) BI+FC  72.0  +30
Bl (2)-BI-(6) BI+FC  73.6 435
FCg layers are referred to as BI,(6)-BIs(10) BI+FC 734  +55
BIg(H), BI7(H) and BIg(H) re- Bls(2)-BI7(6) FULL 74.1 +35
: ) Bl (2)-BI;(6)-CRF FULL 75.1  +865
spectively, where H is the num-
DeepLab-CRF [3] 72.7 4830
ber Of kernels. All results us- DeepLab-MSc-CRF [3] 73.6 1880
ing the DeepLab model on Pas- DeepLab-EdgeNet [6] 717 430
DeepLab-EdgeNet-CRF [6] 73.6  +860

cal VOC12 dataset are summa-

flzed7 in Tab. 1'. We rep(?rt Fhe Table 1. Semantic Segmentation using
test” numbers without validation DeepLab model. IoU scores on Pascal VOC12
numbers, because the released segmentation test dataset and average runtimes
DeepLab model that we adapted (ms) corresponding to different models. Also
was trained using both train and shown are the results corresponding to competi-
validation sets. The DeepLab net- tive dense pixel prediction techniques that used
work achieves an IoU of 68.9 af- the same base DeepLab CNN. Runtimes also in-

ter bilinear interpolation. Exper- clude superpixel computation (6ms). In the sec-
iments with Blg(2) module indi- ond column, ‘BI’; ‘FC’ and ‘FULL’ correspond

cate that even only learning the to training ‘BI’, ‘FC’ and full model layers re-

inception module while keeping spectively.

the remaining network fixed results in an reliable IoU improvement (+1.9). Ad-
ditional joint training with FC layers significantly improved the performance.
The results also show that more kernels improve performance. Next, we add
multiple modules to the base DeepLab network at various stages and train them
jointly. This results in further improvement of the performance. The Blg(2)-
BI;(6) model with two inception modules shows significant improvement in IoU
by 4.7 and 0.9 in comparison to baseline model and DenseCRF application re-
spectively. Finally, finetuning the entire network (FULL in Tab. 1) boosts the
performance by 5.2 and 1.4 compared to the baseline and DenseCRF application.

Some visual results are shown in Fig. 5 and more are included in the sup-
plementary. Several other variants of using BI are conceivable. During our ex-
periments, we have observed that more kernels and more modules improve the
performance, so we expect that even better results can be achieved. In Tab. 1, the
runtime (ms) is included for several models. These numbers have been obtained
using a Nvidia Tesla K80 GPU and standard Caffe time benchmarking [38].
DenseCRF timings are taken from [6]. The runtimes indicate that the overhead
with BI modules is quite minimal in comparison to using Dense CRF.

In addition, we include the results of some other dense pixel prediction meth-
ods that are build on top of the same DeepLab base model. DeepLab-MSc-
CRF is a multi-scale version [3] of DeepLab with DenseCRF on top. DeepLab-
EdgeNet [6] is a recently proposed fast and discriminatively trained domain
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transform technique for propagating information across pixels. Comparison with
these techniques in terms of performance and runtime indicates that our ap-
proach performs on par with latest dense pixel prediction techniques with signif-
icantly less time overhead. Several state-of-the-art CNN based systems [15,16]
have achieved higher results than DeepLab on Pascal VOC12. These models are
not yet publicly available and so we could not test the use of BI models in them.
A close variant [26] of our work, which propose to do optimization in the bilat-
eral space also has fast runtimes, but reported lower performance in comparison
to the application of DenseCRF.

CRFasRNN As a second architec-
ture, we modified the CNN architec-

ture trained by [5] that produces a re- ogel ToU Runtime
. 1

sult at an even IOWGY_ resolution (75X).  DeconyNet(CNN+Deconv.) 72.0 190ms

Multiple deconvolution steps are em-

. R With BI modules
ployed to obtain the segmentation at BI;(2)-Bl4(2)-Bls(2)-Bl7(2) 74.9 245

input image resolution. This result is CRFasRNN (DeconvNet-CRF)  74.7 2700
then passed onto the DenseCRF recur-
rent neural network to obtain the fi- Table 2. Semantic Segmentation us-
nal segmentation result. We insert BI ing CRFasRNN model. IoU scores and
modules after score-pool3, score-poold, runtimes corresponding to different models
FCg and FC; layers, please see [18,5] ©0 P@scal VQCIZ test datas.et. Note that
for the network architecture details. r,untlme also includes superpixel computa-
Instead of combining outputs from the tion.

above layers with deconvolution steps, we introduce BI modules after them and
linearly combined the outputs to obtain final segmentation result. Note that we
entirely removed both the deconvolution and the DenseCRF parts of the orig-
inal model [5]. See Tab. 2 for results on the DeconvNet model. Without the
DenseCRF part and only evaluating the deconvolutional part of this model, one
obtains an IoU score of 72.0. Ten steps of mean field inference increase the IoU to
74.7 [5]. Our model, with few additional parameters compared to the base CNN,
achieves a IoU performance of 74.9, showing an improvement of 0.2 over the CR-~
FasRNN model. The BI layers lead to better performance than deconvolution
and DenseCRF combined while being much faster.

Hierarchical Clustering Analysis We learned the network parameters us-
ing 1000 gSLIC superpixels per image, however the inception module allows
to change the resolution (a non-square K). To illustrate this, we perform ag-
glomorative clustering of the superpixels, sequentially merging the nearest two
superpixels into a single one. We then evaluated the DeepLab-Blg(2)-BI7(6)
network using different levels of the resulting hierarchy re-using all the trained
network parameters. Results in Fig. 6 show that the IoU score on the validation
set decreases slowly with decreasing number of points and then drops for less
than 200 superpixels. This validates that the network generalizes to different
superpixel layouts and it is sufficient to represent larger regions of similar color
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Validation loU
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Fig. 6. Hierarchical Clustering Analysis. From left to right: Validation perfor-
mance when using different super-pixel layouts, visualization of an image with ground
truth segmentation, and the Blg(2)-BI7(6) result with 200, 600, and 1000 superpixels.

by fewer points. In future, we plan to explore different strategies to allocate
the representation to those regions that require more resolution and to remove
the superpixelization altogether. Fig. 6 shows example image with 200, 600, and
1000 superpixels and their obtained segmentation with BI modules.

4.2 Material Segmentation

We also experiment on a different pixel
prediction task of material segmentation

by adapting a CNN architecture fine- “podel Class / Total Runtime
tuned for Materials in Context (MINC) [4] accuracy

dataset. MINC consists of 23 material Alexnet CNN 55.3 / 58.9  300ms
classes and is available in three different BI.(2)-Bls(6) 67.7 / 71.3 410
resolutions with the same aspect ratio: Bl7(6)-Bls(6) 69.4 /728 470
low (550%), mid (1100%?) and an original ~AlexNet-CRF 65.5/71.0 3400

higher resolution. The authors of [4] train
CNNs on the mid resolution images and
then combine with a DenseCRF to predict
and evaluate on low resolution images. 1o MINC material se gmentation
We build our work based on the Alexnet g, (g6t [4]. Runtimes also include the
model [46] released by the authors of [4]. time for superpixel extraction (15ms).
To obtain a per pixel labeling of a given

image, there are several processing steps that [4] use for good performance. First,
a CNN is applied at several scales with different strides followed by an interpo-
lation of the predictions to reach the input image resolution and is then followed
by a DenseCRF. For simplicity, we choose to run the CNN network with single
scale and no-sliding. The authors used just one kernel with (u, v, L, a, b) features
in the DenseCRF part. We used the same features in our inception modules. We
modified the base AlexNet model by inserting BI modules after FC; and FCg
layers. Again, 1000 SLIC superpixels are used for all experiments. Results on
the test set are shown in Table 3. When inserting BI modules, the performance
improves both in total pixel accuracy as well as in class-averaged accuracy. We
observe an improvement of 12% compared to CNN predictions and 2 — 4% com-
pared to CNN+DenseCRF results. Qualitative examples are shown in Fig. 7 and

Table 3. Material Segmentation
using AlexNet. Pixel accuracies and
runtimes (in ms) of different mod-
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(a) Input (b) Superpixels (C) GT (d) AlexNet (e) +DenseCRF (f)
Fig. 7. Material Segmentation. Example results of material segmentation. (d) de-
picts the AlexNet CNN result, (¢) CNN + 10 steps of mean-field inference, (f) results

obtained with bilateral inception (BI) modules (BI7(2)+Bls(6)) between FC layers.

more are included in the supplementary. The weights to combine outputs in the
BI layers are found by validation on the validation set. For this model we do not
provide any learned setup due very limited segment training data.

4.3 Street Scene Segmentation

We further evaluate the use of BI mod-
ules on the Cityscapes dataset [43].

Cityscapes contains 20K high-resolution ‘odel ToU ToU  Runtime
(1024 x 2048) images of street scenes (Half-res.) (Full-res.)

with coarse pixel annotations and an- DeepLab CNN  62.2 65.7 0.3s
other 5K images with fine annotations, BIs(2) 62.7 66.5 5.7
all annotations are from 19 seman- Ple(2)-Bl7(6) 63.1 66.9 6.1
tic classes. The 5K images are divided DeepLab-CRF  63.0 66.6 6.9

into 2975 train, 500 validation and re-
maining test images. Since there are
no publicly available pre-trained mod-
els for this dataset yet, we trained a Cityscapes segmentation dataset [43], for
DeepLab model. We trained the base both half-resolution and full-resolution
DeepLab model with half resolution im-  jages. Runtime computations also in-
ages (512 x 1024) so that the model fits clude superpixel computation time (5.2s).
into GPU memory. The result is then

interpolated to full-resolution using bilinear interpolation.

We experimented with two layouts: only a single Blg(2) and one with two
inception Blg(2)-Bl;(6) modules. We notice that the SLIC superpixels [35] give
higher quantization error than on VOC and thus used 6000 superpixels using [36)
for our experiments. Quantitative results on the validation set are shown in
Tab. 4. In contrast to the findings on the previous datasets, we only observe
modest improvements with both DenseCRF and our inception modules in com-
parison to the base model. Similar to the previous experiments, the inception
modules achieve better performance than DenseCRF while being faster. The
majority of the computation time in our approach is due to the extraction of

Table 4. Street Scene Segmentation
using DeepLab model. IoU scores and
runtimes (in sec) of different models on
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(b) Superpixels (C) GT (d) Deeplab (e) Using BI

Fig. 8. Street Scene Segmentation. Example results of street scene segmentation.
(d) depicts the DeepLab results, (e) result obtained by adding bilateral inception (BI)
modules (Blg(2)+BI7(6)) between FC layers. More in supplementary.

superpixels (5.2s) using a CPU implementation. Some visual results with Blg(2)-
BI7(6) model are shown in Fig. 8 with more in supplementary.

5 Conclusion

The DenseCRF [2] with mean field inference has been used in many CNN seg-
mentation approaches. Its main ingredient and reason for the improved perfor-
mance is the use of a bilateral filter applied to the beliefs over labels. We have
introduced a CNN approach that uses this key component in a novel way: filter-
ing intermediate representations of higher levels in CNNs while jointly learning
the task-specific feature spaces. This propagates information between earlier
and more detailed intermediate representations of the classes instead of beliefs
over labels. Further we show that image adaptive layouts in the higher levels of
CNNs can be used to an advantage in the same spirit as CRF graphs have been
constructed using superpixels in previous works on semantic segmentation. The
computations in the 1 x 1 convolution layers scales in the number of superpixels
which may be an advantage. Further we have shown that the same representation
can be used to interpolate the coarser representations to the full image.

The use of image-adaptive convolutions in between the FC layers retains the
appealing effect of producing segmentation masks with sharp edges. This is not a
property of the superpixels, using them to represent information in FC layers and
their use to interpolate to the full resolution are orthogonal. Different interpo-
lation steps can be used to propagate the label information to the entire image,
including bilinear interpolation, up-convolutions and DenseCRFs. We plan to
investigate the effect of different sampling strategies to represent information in
the higher layers of CNNs and apply similar image-adaptive ideas to videos.

We believe that the Bilateral Inception models are an interesting step that
aims to directly include the model structure of CRF factors into the forward
architecture of CNNs. The BI modules are easy to implement and are applicable
to CNNs that perform structured output prediction.
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