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In the multiple-instance learning (MIL) scenario training
patterns are available only in bags for which a bag labe
is known. The pattern labels remain ambiguous in that al
though instances from the negative class are known, o
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Abstract

In this paper we demonstrate how determinis-
tic annealing can be applied to different SVM
formulations of the multiple-instance learning
(MIL) problem. Our results show that we find
better local minima compared to the heuristic
methods those problems are usually solved with.
However this does not always translate into a bet-
ter test error suggesting an inadequacy of the ob-
jective function. Based on this finding we pro-
pose a new objective function which together
with the deterministic annealing algorithm finds
better local minima and achieves better perfor-
mance on a set of benchmark datasets. Further-
more the results also show how the structure of
MIL datasets influence the performance of MIL
algorithms and we discuss how future benchmark
datasets for the MIL problem should be designed.
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(or parts thereof) share the problem of not being convex.
The pattern labels enter the objective functions as discret
variables creating combinatorial problems which are typi-
cally hard to solve. Most authors provide heuristic learn-
ing schemes to cope with this problem. In this paper we
will apply deterministic annealing which is a standard tool
from non-convex optimization to MIL versions of support
vector machines (SVM). Our results show that this learn-
ing scheme finds better local minima which does not au-
tomatically translate into lower test error. This indicate
an inadequacy of the objective function and we propose a
refined version which overcomes its problems. This new
SVM version also sheds light on the structure of the cur-
rent benchmark datasets which might lead to the design of
more appropriate MIL benchmark datasets in the future.

2 MultiplelInstanceLearning

In the classical supervised classification problem one is

given asetofi.i.d. labeled patteris, y;) € R% x {—1,1}

on which one tries to build a classifigr: R? — {—1,1}.

The multiple-instance learning problem is a generaliza-

tion of this setting where training patterns are given as

bagsB; ¢ R% i = 1,...,N with labelsY; provided
nly for the bag. Each bag consists of possibly many

EatternsBi = {zl,2?,...,2"}. The bag label induces

constraints on pattern labels in an asymmetric way. We

Mfant to emphasize that one has to distinguish between

has to infer which patterns belong to the po;i_tive class. IEaag and pattern label and bear in mind that they have a
is only known thatt least one pattern of a positive labeled different meaning (examples will be given in Section 2.3).

bag belongs to the positive class. Since the MIL problemA negative labeled bag contains only patterns to which
was introduced in [Dietterich et al., 1997] for the task ofa negative label can be assigned to. On the other hand

drug activity prediction, a number of different applicatio a positive bag label only enforces that the bag contains

emerged in the literature. Up to now the span of applica—at least one pattern in the bag which can be assigned

tions cover a variety of problems such as identification ofO the positive class. We will refer to this pattern as the
proteins [Tao et al, 200.4]' conten_t base_d image retriev: itness of the bag. There is no information about the other
[Zhang et_ a,l" 2002]’, ObJeC,t detechon [Viola et al., 2005] points, they might not even belong to either the positive or
and prediction of failures in hard drives [Murray et al., negative class. In the remainder a pattern Iabeh;fovvill
2005]. be denoted by’ .

Several special purpose algorithms for MIL have already

been proposed. Those which try to infer the missing label®©ne can roughly divide the different approaches that



have been proposed for MIL in three different categories2.2 Identifying thewitness

The first category consists of methods which ignore the

MIL setting and treat the problem as a supervised one,

but on the bag-level. Prominent members of this categoryrinally the last category consists of methods which
are set kernel for SVMs [Tao et al., 2004, Gartner et al.2im to identify the witness in the positive labeled bags
2002, Chen et al., 2006] or extensions of the nearestvhich is responsible for the label. Successively a clas-
neighbor a|gorithm using Hausdorff distances [Wangsiﬁer is build on those witnhesses Only, while all other
and Zucker, 2000]. In this paper we will consider only Points drop out of the problem. SVM formulations of
methods from the remaining two categories described ihis versions are th&l-SVM by Andrews et al. [2002]
following two sections. We will review the proposed SvM and the MICA algorithm by Mangasarian and Wild
formulations for the MIL problem and subsequently show[2005]. Both utilize the same objective function as in
how a deterministic annealing procedure can be used t6d-(1) but equip it with a different set of constraints.

solve them. (MI-SVM)  max;((w,ad) +b) > 1 — &,6 >0

2.1 Identifying all labels Mica) Vi) Hh=1-g,
. . Zjl/gzl, vl & > 0.
Models from the second category try to impute all the miss-
ing labels of the patterns in the positive labeled bags andPatterns from negative labeled bags are all used with slack
subsequently treat the problem as a supervised one. The¥@riables! as in mi-SVM. The MI-SVM directly selects
models implicitly assume that each ambiguous point cathe “most positive” patterns from the bags and builds the
indeed be assigned to either the positive or negative (pa€lassifier with them. MICA is not directly identifying a
tern) class, an assumption which C|ear|y depends on th@/itneSS in the bag but a convex combination of all points
nature of the dataset. This approach motivated the corll & bag which acts as a witness. This removes the integer
struction ofmi-SVM in [Andrews et al., 2002] which intro- representation involved in the MI-SVM at the expense of
duced SVMs to the MIL problem. Ambiguous labels enteradding bilinear constraints to the program. It is only for
the objective function as discrete variables over which ond0sitive bags with more than one pattern having an output
tries to optimize. Ignoring these additional variables thelarger than one that the MICA and the MI-SVM wiill
objective function is the same as in the standard supervisediffer in their choice of the witness. As discussed above

SVM case both methods avoid assigning a label to all patterns. Both
[Andrews et al., 2002] and [Mangasarian and Wild, 2005]
L(w, b, &, {y)}) = 1||w|‘§ +Cl€]l2 (1)  Proposed an algorithm which alternates between updates
y Yy Sy LY 2 S )

of the SVM parameters and identification of the witnesses.
The main difference in both formulations is that for MICA
il penalization of the weights is used whereas the objective
unctions from [Andrews et al., 2002] usg penalization.
%rom a machine learning perspective it is a priori unclear

wherew € R? b € R are the weight vector and offset
of the SVM. The difference appears in the constraint se
which is modified to ensure label consistency with the ba

label which norm is better suited for a given problem and
_ yf((m%?) Fb)>1- Zaff >0, this is wh_y we chose to usk pengllzann to unify the_
(Mi-SVM) presentation. All presented algorithms (and those which

ViV, =1, i yi +1 >1, @) follow)_can be kernelized and are easily _implemer_wted by
= 2 extension of gny.SV!\/I solver. Ina kerne_llzed version the
, convex combination is taken in the associated RKHS.
yzj € {_1’ 1}
Vi:Y; =—1, yf =-1. The EM-DD algorithm [Zhang et al., 2002] employs
_ a probabilistic framework to find a witnegsor multiple
Due to the discrete variableg this problem is no longer witnesseg; of the positive class in feature space. Those
convex but a combinatorial one. To find the global min-points ¢; should be close to at least one pattern from
imum of £ one would have to check all possible assign-every positive labeled bag and as far away as possible
ments of the labels. Therefore Andrews et al. [2002] use d&rom all points in the negative labeled bags. Again the
heuristic method to optimize this objective function. $tar optimization of this problem iterates between updates of
ing by assigning all pattern labels from positive labeledt and assignments of the witnesses of the positive labeled
bags to be 1, the optimization for the parameters and  bags.
the assignment fog based on the resulting classification
boundary is alternated. After each step the constraints (2As most algorithms which are used for MIL mi-SVM,MI-
are checked and if necessary enforced by setting the lab&VM,MICA and EM-DD share the problem of being
of the pattern whose function output is least negative to 1.combinatorial problems of the instance labels. All of



them require the minimization of a non-convex objective3 Deterministic Annealing

function and use heuristics to do so. In the remainder of

the paper we will describe how deterministic annealingDeterministic annealing (DA) is a special case of an homo-

can be used to obtain better local minima of the objectiveopy method and may be applied in a more general con-

functions for MI-SVM, MICA and mi-SVM. text than introduced here. Our outline mostly resembles
Sindhwani et al. [2006] who applies DA to semi-supervised
learning. For a more detailed review we refer to Rose
[1998]. Suppose one is given a non-convex optimization
problem of the formy* = arg min,c 9,13~ F'(y). DA finds

2.3 Imputing all labels ver susidentifying witnesses a local minimum of this function as follows. Firstly the dis-
crete variables are regarded as random binary variables de-
fined over a space of probability distributiofs Instead of

Which of the methods described so far should be appliedo|ying the optimization problem directly one searches for

to a given MIL problem? If one has the knowledge thatj gjstributiorp € P which minimizes the expected value of

for a given dataset patterns in the positive labeled bag cag By doing so, the optimization problem becomes contin-

clearly be divided into a positive and a negative class, thg,oys but is not easier to solve. For this reason, an additiona

mi-SVM algorithm is the natural choice. If however all convex term is added to the objective function: the entropy
of the patterns from positive labeled bags are believeds of the distribution

to belong to the positive class a standard SVM can be
employed where the label ambiguity is ignored altogether. p* = argmin E,(F(y)) — TS(p). (3)
The popular benchmark dataset for MIL MUSK1 falls pEP

under this category. A SVM decision function obtained byThe parameteT which controls the trade off between the

ignoring the ambiguity of the pattern labels already givesexpectation and the entropy is called tiemperature of

a classification performance of 85.6% which is already, : ;

the problem. As a first observation, note that Tor= 0
better than the reported results for EM-DD,MI-SVM and b ! val
MICA. This finding is also reported in [Ray and Craven

2005].

andP including all point-mass distributions ové6, 1}
' the global minimizep* of the problem above will put all
of its mass on the global minimizer df. Thus the new
. _ formulation preserves the optimality of the original prob-
gonad_er on the th_er har;d a _face I_de_tecnolrll prob_lgquem' If on the other hand@” > 0 the entropy term in
ome image containing a face Is split into all possi eEq.(3) dominates the objective function and the problem

patches. The union of all patches forms a bag Whicr\/\/ill be solved easily thanks to convexity. So we can find

we label positive as one of the patches §hows thg faCS solution by solving a sequence of problems for values of
completely and centered. However there is a continuu ST > < T — 0 each of which is initialized at
ho =

. . . 0
o{hpatternf in th|ts blig. Some s_?gw the f"f[‘cﬁ onlyhpa:;tjlallythe solution obtained by the previous one. This sequence of
others only parts like eyes. ese palches shou n()[Iemperatures is referred to as the annealing schedul€. As

belong to either of the classes. Itis sufficient to identify t pproaches zero the influence of the entropy term vanishes

one patch with the cqmplete face on it. On the other han nd the distribution will become more concentrated on the
all patches from an image without a face can be labele

negative without any problem. In this case an algorithm inimum of E,[F. In this case we can identify the dis-
' crete variableg by p. Of course there is no guarantee for
like the MI-SVM or MICA is the one of choice. vanabieg by p u Is no gu

global optimality because there might not be a path con-
L . necting the local minimizers for the chosen sequencE of
There are also other problems which in the I|teraturetO the global optimum of.
are considered to be MIL problems. Assume an image
depicting a car is represented as a collection of small

patches each single one not containing the entire ca# DA applied to Multipleinstance learning

The label “car” for the image, tells us that there is at

least one car-part-patch amongst all those patches. BWe will now derive deterministic annealing algorithms for
this conclusion can not be reversed. The existence ahe formulations of the support vector machines described
a car-patch in an image does not allow the conclusionin Section 2. Recall that the objective function Eq.(1) is
that there is a car shown in the image. In this case it iglefined on both discrete and continuous variables. There-
clearly a combination of patches which matters. Thus infore for a given temperaturE we have to optimizep and

this example bag labels and pattern labels have differerthe SVM parameters) andb. This can be done with an
meanings. Nevertheless there are approaches which try &dternating scheme in a coordinate descent fashion which
solve this problem using the MIL framework. In the setting is guaranteed to decrease the objective function. Note that
presented in this paper the corresponding task would be teach alternating step itself is an easy to solve convex prob-
classify car-part-patches against other patches. lem.



4.1 Deterministic Annealing for SVM inferring all
patterns

The goal of the mi-SVM is to impute all missing labels of

the instances in the positive labeled bags. Following the

DA principle we will regard the Iable of a pattern from
a positive labeled bag] € B;,Y; = 1 as an independent

binary random variable. In principle our space of distribu-

tionsP consists of all possible distributions over. How-

ever since we know that there are no terms in the objece ()

tive function which couple the pattern Iab@)ﬁ we know
that the optimal distribution has to factorize. Therefoe w
can restrict our search spaPdo the factorial distributions.
The distribution for! is defined byP(y] = 1) = p! which
implies P(y) = —1) = 1 — p!. One can think of the value
of p/ as the belief that the instane¢ belongs to the pos-
itive class. To simplify the notation we will fip{ =0
for all patterns from negative labeled bags. The constrai
on the pattern labels from mi-SVM directly translates to
Zj p] > 1, namely the expectation of positive labeled pat-

terns in a positive labeled bag is larger than one. Applyind®

Equation (3) to the objective function from Eq.(1) we ar-
rive at the following minimization problem which we now
write as a unconstrained one with a loss function

N mj
Lr(w,b,p) = |wl+C> > pl((w,al)+b)
i=1 j=1
+(1 = p)l(—(w, z]) — b)]
N,m]‘
+T Y (p)logp! +
i,j=1

(1—p))log(1 —p])). (4)
The constraint set to this objective is
0<pl <1, Vi,j

m;

dpl=1Vi:Yi=1
j=1

®)
(6)

(AL-SVM)

One possibility to solve this problem is to alternate be-

tween updatindw*, b*} = argmin, ;, Lr(w, b, p*) and

p* = argmin, Lr(w*, b*, p) until we converged to a new
(local) minimum. For a fixegh the SVM parameters can
be found using any quadratic program solver. For exam
ple one can simply duplicate the patterns from the positiv
labeled bags (one with a positive label and one with a ne
ative) and use two different costs for each pattern, namel
Cp! andC(1—p!). To find the optimal value gf we write
the dual function of the program

N
ﬁlT(pv )‘) = ET(wv b,p) _Z

A pl-1), st >0
i=1 j=1

()

n

Taking the derivative w.r.tp and equating to zero yields
the following expression for the optimalwhile fulfilling
the constraints

pl(N) = 0’(

where d{ is the difference of positive and negative
loss, i.e. ! = I((w,2?) + b) — I(—(w,2?) — b) and
(1 + exp(—t))~! denotes the sigmoid function.
The solution will always satisfyo) < p/ < 1. The
Lagrange multiplier); couples only variables within a
bag and therefore the optimization fp} can be done in
parallel for all the bags. To solve foZ one can check
if S2p/(0) > 1 in which case the constraint is satisfied
and thus\; = 0. Otherwise we know that_; pl(N) =1
_?di) /250 (‘idi). There-

fore the calculation of the new assignments jocan be
done very efficiently and does only incur marginal costs
ompared to the quadratic programs one has to solve at
each iteration. The quadratic program can be initialized
with the solution from the previous iteration to speed up
convergence. In order to start with an easy convex program
we have to choosé&j to ensure that we start with high
entropy distributions. We found that choosiiig = 10C

is sufficient to ensurg 0.5 in all experiments we
conducted. The resulting algorithm for AL-SVM is
summarized in Algorithm 1.

—Od) + \;

. ®)

hich impliesp’ = &
W pliesp;

~
~

We would like to emphasize that we are minimizing
the same objective function with the same constraints as
the program mi-SVM. However the initialization of the
algorithm is different, and this fact influences the type of
local minima which are found. The optimization procedure
proposed in [Andrews et al., 2002] initializes pattern labe
to be identical to the bag label. We observed that for each
iteration of their algorithm only some labels are changed
and the whole algorithm is biased toward solutions with a
large number of positive labeled points. Their algorithm
is equivalent to the DA algorithm if the initialization
p] = (yi + 1)/2 is used and one starts wiffy ~ 0. In the
experiments we usg, = 10~°® to emulate this case.

4.2 Deterministic Annealing for SVMsidentifying the
witness

ge_rhe two other methods build classifiers on the believed wit-

esses of the bags (the following derivation easily extends
o the case when it is known that more than one positive
instance resides in a bag). In the MI-SVM the most posi-

tive pattern is chosen to be this witness while in the MICA

this integer representation is replaced by a convex combi-
nation of the points. We use a distribution over the patterns
which leads to a convex combination of the costs. Each in-
stance has a belief of being the witness of the bag which



Algorithm 1 Deterministic_Anealing for identifying all
Labels (AL-SVM)
: Initialize p] = 1 if ¥; = 1, 0 otherwise.
. Initialize T' = 10C (relatively high temperature)
while S(p) > e do
repeat
computew, b using quadratic problem solver
setq=p
computep by Eq.(8) (and solve i, cf text)
until KL(p,q) < ¢
setl’' =T/1.5
: end while

is encoded ir;v{. To ensure that we have a probability

is summarized in Algorithm 2.

The formulation we obtained here is a deterministic
annealing version of MICA. This is seen by takifig= 0

and identifyingy; with p/. We are optimizing the same
objective function using a more sophisticated algorithm
as originally proposed in [Mangasarian and Wild, 2005].
Additionally the entropy term determines the choice of
the convex combinations in cases when there are more
possibilities for the MICA. In contrast to the MI-SVM
and MICA the DA algorithm might lead to more than one
witness.

Algorithm 2 Deterministic_Anealing for identifying the
Witness (AW-SVM)

distribution over each bag we have to add the constraintl:
2:
cludes all distributions over the patterns in each bag. We 3:
setp] = 1 for instances from negative labeled bags, effec- 4:
tively treating them as bags with a single pattern, and keep5:
these values fixed (In fact we are sure that those patterns:
are witnesses of their bag label). In this case DA translates?:

S pl =1, Vi:Y; = 1. The probability spac® in-

Initialize p/ = mpif Yi=1 andp’ = 1,if v; = -1
Initialize T' = 10C'
while p changed in the inner loogo

repeat
computew, b using quadratic problem solver
setq=p

Setp according to Eq.(11)

the objective function Eq.(1) into 8: until KL(gq,p) <e¢
9. setI'=T/15
N m; .
Lo , 10: end while
2 ; .
Lr(w,b,p) = |lwlz+ szpgl(yi“waxﬁ +0) 11 sety! = 1 for all p! > € and updatev, b using this
=1y=1 assignment
+T> > pllogp! ©)
i=1 j=1
mp 5 Experiment: 2D Toy dataset
(AW-SVM) st > p/=1Vi:Y;=1 (10)
i=1 To compare the differences between the algorithm from

We iterate between updating the search for optimal param-

etersw andp at a temperaturg’ in the same way we did
for the AL-SVM. Each instance enters the objective func-
tion with an individual weightCp!. Again taking the dual
function to Eq.(9) and equating its derivative to zero we
obtain an analytic solution for

, mi K
p; = exp (— ) /> exp (—%) , (1)
k

where we abbreviatef = [(Y;((w,z!) + b)). Thus
similar to the AL-SVM updates qf;{ are of only marginal
computational cost. A high value @f favors high entropy
distributions, in this casg] ~ 1/m,. The lower the value
of T' the more willpf be concentrated on patterns which
occur a low cost. In the extrenie — 0 only points with

I = 0 will have ap! > 0, or if all points in a bag have
a positive cost the one with minimum loss will be picked

Ctl
T

Andrews et al. [2002] and the annealing algorithm we
conducted an experiment using synthetic 2D data. This
way we can control the number of instances with a positive
label in the positive labeled bags and therefore test the
results for pattern and bag accuracy. We created ten
different type of datasets by varying the fraction of pesiti
labeled points per bag over = 0.1,0.2,...,1. A bag
was generated in the following way. The lakél and

the sizem; are uniformly sampled from{—1,1} and
{1,2,...,10}. For a negative labeled bag we sample
m; patterns uniformly from the black region (negative
class) in the leftmost picture in Figure 1. A positive
labeled bag consists dffm;| points sampled uniformly
from the white region (positive class) and the remaining
[(1 — f)m;| points from the negative class. For each
fraction f we sampled 30 training and 100 test bags. The
hyperparameters were fixed €@ = 100 ando = 1 in the
radial basis function kernels. Using this data AL-SVM and
AW-SVM were trained withl’ = 10~% andT = 10C. The

as the witness of the bag label. The latter case is exactlgveraged results over 50 independent runs are shown in the

the same solution found by MI-SVM and MICA. Again

two plots on the rightin Figure 1. Matlab code used for the

Ty = 10C was used as a starting value for the temperatureexperiments is available online at t p: / / waww. kyb.
The complete algorithm for annealing based on withessespg. de/ bs/ peopl e/ pgehler/m |/ m 1. htn
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Figure 1: A 2D toy dataset. From left to right: Regions of pigsi (white) and negative (black) patterns (ground truth),
Bag classification error averaged over 50 runs. Pattersiitzegion error averaged over 50 runs.

dication that it is the objective function which is inade-
These simple experiments reveal an important propguate. This motivates the following extension of the ob-
erty of the algorithms. In the case of little ambiguity jective function. We replace Eq.(1) by
the non-annealed versions of the AL-SVM which are

equivalent to the mi-SVM formulation give low error rates £'(w,0,&.{y{}) = L(w,b,&,{y{}) (12)
in pattern label accuracy (right). On the other side if only mi 2
few points per positive labeled bag are of the positive class  (ALP-SVM) +Cy Z Z yi =1 mipt |,
the error rates are very high. This result stands in contrast 2 F 2

to the annealed versions where the reversed behavior is
observed. Using the DA algorithm witlh = 10C the  with the constraint set of (mi-SVM). The new hyperparam-
classification rates on the bag label are better than thegterp; can be used to control the expected number of pos-
non-annealed counterparts and also yield lower values dfive labeled points per bag. Assignmerdts,...,y;" '}
the objective function. This behavior can be explained bywhich deviate from this fraction are penalized. For bags
observing that the mi-SVM initializes all pattern labels to with a negative bag label we spf = 0 because we
be positive and therefore tends to local minima close tado not expect any positive labeled points in these bags.
this initialization. Hereby this algorithm overestimatee  This way an over- and underestimation of the fraction of
number of positive labeled points in a bag. The annealegositive labeled points per bag can be avoided, similar
version however has a problem as well, it underestimatetp a balancing constraint in semi-supervised learning. A
this number. balancing constraint ensures that the fraction of positive
negative labeled points estimated on the unlabeled point
The results for the annealed and non-annealed AWwset is the same as that from the labeled training examples.
SVM do not differ in this toy example. For this data set This quantity can therefore be estimated from the training
both methods seem not so prone to local minima and it iset where in the MIL setting there is ambiguity of the
more or less irrelevant which patterns are identified as thélata and therefore no obvious way of how to choose this
witness. value. The value fop} can either be prefixed due to prior
knowledge or be left open as a hyperparameter estimated
via cross validation. As the number of parameters to be
6 A new objectivefunction - ALP-SVM e_stim_ated scal_es V\ftithf n.ur'n.bergf positive bags we will
simplify by settingp; = pj Vi,j: Y; =Y.
The findings in_the. previou; section rgise; the question oi'he objective function Eq.(12) can easily be opti-
whether the objective fl_mct|on E_q.(l) is suited for the MIL mized using deterministic annealing. Replacing the intege
problem. The alternating algorithm from Andrews et al'valueSyf by introducing probabilities for their assignment

[2002] overestimates the number of positive labeled point§,o naw term in the objective function of ALP-SVM
in a bag which is a result of the initialization and the al- ;.o - ates to

gorithm it is solved with. The annealing on the other hand

is not biased towards a low or a high number of positive ms
points. However the previous experiments show that it suf- Cy Z Zpg — mips (13)
fers from the problem of underestimation which is an in- i J

2



The only difference to the DA algorithm for AL-SVM is T=0 T=10C T=10Cp*

the update of the probabilitigs Again the parameters can err p err D err D
be optimized for each bag independently. For a fixed set Tiger 25.0 79% | 30.5 19%| 14 60%
of SVM parameters, b we solve Eq.(12) including an en- | Fox 435 60% | 385 16%| 35 72%

tropy term forp; using conjugate gradientignoring the con- | Elephant| 24.0  91% | 30.5 14%)| 165 58%
straint)_; p/ > 1 (Eq.(6)). If a solution does not satisfy Muskl | 143 100% | 20.6 38%]| 143 99%

Eq.(6), i.e. is outside the feasible region of ALP-SVM we
know that a solution of the constraint problem will lie on Table 1: Results on several benchmark datasets. Standard

the simplexsz{ = 1. In this case Eq.(13) is simply a deviation of the 10x fold cross validation error is usually

constant and thus the solution is the same as for the ALaround 3.5%
SVM.

datasets. For the MUSK1 dataset there was no better
solution found than setting all pattern labels positive, a

solution also found by the ALP-SVM.
For a comparison of the proposed algorithms to those pub- H N 4

“Shed. in the literature and esp.eC|aIIy the SVM Programsa inal set of experiments was done on all the datasets
described above we ran experiments on some benchma%

q for the MIL orobl Wi d the MUSK and th scribed above as well as on MUSK2. We used the same
atasets for the problem. We used the andt egrid of hyperparameters as in the initial experiments but

CtOIi'eEzl_oggtasets (Tiger,Elephant,Fox) used in [Andrewshow also varied the width of the kernel bandwidth in the
etal, 1 interval o € {oemp 20emp 0.50emp}. However best

. , . performance was almost always obtained using using the
Again a first set of experiments was run to compare.

q s i he al 0 heuristic al initial bandwidthcemp The final results together with
eterministic annealing to the alternating heuristic algo /. reported in Zhang et al. [2002], Mangasarian and

rithm._ As a_Iready noted the AL'SVM s equivalent to Wild [2005], Andrews et al. [2002] are shown in Table
the mi-SVM if _the temperature Is _se_t_to_ a very low value.2. Note that the results obtained using MICA,MI-SVM
We used agairl; = 10~2 and initialized aII_ pattern and AW-SVM on the one and mi-SVM and AL-SVM on
labels to be the same as the bag label to obtain the resul{ﬁe other hand despite their similarity vary quite a bit,

for tTIS c;pﬂmlzgtgyMtechSﬂLljes.V,\l\lﬂote thgt t_he deb.“ShedWe therefore suspect that the datasets are very sensitive
results of the mi- an Rk are obtained usihg 1, o el selection. The fractions of positive points per

penalization ar_1d the hinge loss function. I_:or MICA the . positive labeled bag for the best solution of the ALP-SVM
norm of the weights was used as a regularizer together wit r all datasets are also shown in Table 2

the hinge loss and therefore those published results can

not be compared if one wants to judge the quality of theThe experiments show that DA does not help for the
algorithm. To unify the presentation we ran all experiments,formu|a,[i0nS identifying the witness and for the MUSK
usi_ng quadratic loss function ang penalization of the datasets even worsen performance. However we have to
weights. emphasize that using DA one always achieves a lower
value of the objective function (numbers not reported
ﬂere). There are two possible explanations to this phe-

Th ining_ h t timized usi nomenon. Either the objective function is not suited for
€ remaining hyperparameters were opimized using,qqeq particular datasets or it is more or less irrelevant

10 fold cross validation where we searched over the gri hich witnesses are identified. The objective functions

C € {1,10}, Cy € {1,10} andp* € {0.1,.0.2,...,1}. : L
) ’ ) v could be easier to optimize in this case.
The results are shown in Table 1. In addition to the cross u ! plmize | !

validation error we also report the average fraction of
estimated positive instances in a positive ppag

7 Experiment: Benchmark datasets

We used an RBF kernel and set the bandwidth to the th
median of the pairwise pattern distances denoteddip

The results of the ALP-SVM are promising. Using
this formulation the under/overestimationybis overcome
.and a better local minima of the objective function directly

On_aII dataset except Fox we obs_erve the same b_ehav'(?rranslates into better classification performance. In the
as in the ?D tpy exa_mple, that Set_t'ﬂg: 0 leads to h'9h direct comparison with an annealed and non-annealed
values ofp while settlr?gT - 10.0 y|elds a low value Ob‘. . ,AL-SVM the cross validation error is lower on all datasets.
The ALP-SVM penalizes deviation from the prespecmedAS the results using the ALP-SVM are better than those
fraction p* and therefore overcomes this problem by, Aw.SyM,MI-SVM and MICA (except MUSK?2) it
flngllng SOIUUOUS which I|e_“|n between”. Using the new seems that the latter methods waste information by using
objective function we obtain better results on the CORELOnIy one point per bag for building the decision function.

L. cs. col unbi a. edu/ ~andr ews/ ni | / They could in principle benefit if they are able to identify
dat aset s. ht ni witnesses in a positive labeled bag more reliably.



EMDD | MI-SVM | MICA | AW-SVM mi-SVM | AL-SVM ALP-SVM
MUSK1 15.2 22.1 15.6 | 14.3| 20.6 12.6 143 206| 13.7 p=1
MUSK2 151 15.7 9.5 16.2| 20.8 16.4 17.4| 13.8| 13.8 p=0.28

Tiger 27.9 16 18 17 17 21.6 215| 28 14 p=06
Elephant| 21.7 18.6 175 | 18 19 17.8 205| 29 | 165 p=0.58
Fox 43.9 42.2 38 36.5| 37 41.8 36.5| 37 34 p=0.71

Table 2: Results on several benchmark datasets. Left colaAW-SVM and AL-SVM are results obtained withy =
10~® ~ 0, whereas the right column states the resultffoe 10C. The standard deviation of the 10x fold error is usually
around 3.5% for our experiments.
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