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Abstract

We study the problem of visual object detec-
tion and propose a method that learns the in-
ference procedure during training time. We
propose a best-first search based inference
system that is already optimized for during
training. This overcomes the inherent lim-
itation of branch&bound whose applicabil-
ity relies on the availability of tight bound-
ing functions. The optimization problem is
implemented using a structured maximum
margin formulation, an efficient test time in-
ference is already “learned” during training
time. Based on this technique we show how
to perform object detection using non-linear
SVM only, without the need of cascade-like
approximations. We demonstrate the algo-
rithmic properties using the VOC’07 dataset.

1. Introduction

Object class detection in images is challenging because
of two problems. First, objects exhibit large variations
due to intra-class variability, illumination changes, etc.
Second, objects may appear anywhere in an image
with unknown scale, and need to be localised. Much
progress has been reported lately, manifesting in in-
creasing evaluation scores of the VOC benchmark (Ev-
eringham et al.). In this paper we are studying an algo-
rithmic approach that focuses on detection efficiency.
Our approach is designed with two demands in mind:
detectors must cope with the appearance variations
and must handle the large search space efficiently.

This workshop paper is a shorter version of a confer-
ence contribution of this work (Lehmann et al., 2011).
Please refer to the conference version for more details
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including a full discussion of the related literature.!

In current object detection systems, appearance vari-
ations of images are best captured by non-linear
SVM classifiers that make use of diverse image fea-
tures (Vedaldi et al., 2009; Gehler & Nowozin, 2009).
Unfortunately these classifiers are computationally de-
manding and yield a challenging inference problem.
This is because of the large search space of typically
>10k bounding boxes per image. This leaves two pos-
sible options to handle the search space: (A) reducing
the cost of a single classifier evaluation (Viola & Jones,
2004; Vedaldi et al., 2009) or (B) reducing the number
of classifier calls (Lampert et al., 2009; Lehmann et al.,
2010). Let us stress this point: we distinguish between
the cost of the classifier and the number of times it is
executed. These two factors are orthogonal and their
product yields the total runtime. In this work we fo-
cus primarily on (B), noting that combination of both
options are also possible (Lampert, 2010; Weiss et al.,
2010).

Cascade classifiers (Viola & Jones, 2004; Vedaldi et al.,
2009; Felzenszwalb et al., 2010) are prominent exam-
ples to approach (A). They reject many hypothesis
with a simple criterion and thereby avoid many com-
putations. However, they do not per-se reduce the
number of calls and the total runtime still scales lin-
early in the number of detection sites. We consider
these approaches to be fast but not efficient as they
do not scale well (e.g. to multi-class). Branch&bound
methods (Lampert et al., 2009) fall into the category
(B). They reduce the number of calls by avoiding ex-
haustive search. This is possible by operating on sets
of hypotheses. The detector adaptively partitions the
search space and focuses on the most promising set.
This best-first search allows for impressive runtime
given a tight bound on the classifier function. Tight
bounds are however a severe limitation as they are of-
ten unavailable expect for simple function classes e.g.
linear SVMs.

lsee WwWww.vision.ee.ethz.ch/~lehmanal/

publications.html for material.
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Figure 1. Detecting an object in an image is decomposed
into different tasks. The approach smoothly blends from
image classification (T1) to object detection (T4).

This paper supersedes the notion of bounding and
thereby allows for using arbitrary classifiers. We adopt
the best-first search and “branch” but do not “bound”.
Instead, we explicitly integrate the idea of scoring sets
into the training problem. Intuitively speaking we aim
to “learn the bound”. More precisely, we learn a rank-
ing function that prioritises hypothesis sets that do
contain an object over those that do not. We de-
liberately choose to work with non-linear SVMs and
RBF-x? kernels. These classifiers have been shown
to perform well (Lazebnik et al., 2006; Vedaldi et al.,
2009), but are generally perceived as being too slow to
be directly applicable; we here show that using only
evaluations of these non-linear SVMs is feasible. We
train them in a multi-task setup which accounts for
the size of hypothesis sets; we thereby separate im-
age classification from object recognition, yet combine
them in a joint objective (c.f. Fig. 1).

2. Branch and Rank

The test time inference of object detection is to pre-
dict a tight bounding box around the object in an im-
age. We parametrise a bounding box by its center
(z,y), scale s, and aspect-ration r. Sets of bounding
boxes A = (I, z,T,Y,7,S,5,T, F) comprise all bound-
ing boxes in image I with center (z,y) € [z, T X [y, 7],

and scale/aspect-ratio in the intervals [s,s] and [r,T].

The test-time inference problem is implemented as a
adaptive, best-first search strategy that is governed by
a priority queue. Initially, the whole search space is en-
tered into the queue as a single element. At each step
the highest ranking element in the priority queue is
split in two smaller sets which are subsequently scored
and inserted into the priority queue. In case the high-
est ranking hypotheses set is a single bounding box (or
a sufficiently small set) a detection is reported. This
results in a kD-tree partitioning of the entire search
space. See (Lehmann et al., 2010) for more details.

Before we turn to learning, imagine we had available
a function forec® that at any point during inference
sorts the elements in the priority queue in the best
possible way. In that case, the algorithm will first ex-
amine all sets that do contain an object and the size of
these sets decreases exponentially fast (as we always
split them into two halves). That implies that objects
of interest are detected in logarithmic time (aka binary
search). Of course, this cannot be expected in prac-
tice, but it suggests: the better a ranking function, the
better and faster the detector.

2.1. Learning Problem

Let L be the set of all hypotheses sets while L™ rep-
resents only those that contain at least one object.
When using a priority queue during inference we would
like a function f that keeps it sorted depending on
whether the object is present in the set, namely

FAT) > f(A)

where the set AT contains at least one object and A
contains no object (or only with partial overlap).

VAT eL*, VAeL\L*", (1)

We implement learning using a max-margin formula-
tion with margin-rescaling

P 112 +C S50 6 )
sht.  f(AS) = f(A) > AAS,A) - &, (3)

VAFeLt VAeL\L*

with slack variables &; for every positively annotated
example {AjJr }7_1 and regularisation parameter C,
that trades data fit with model complexity. The loss
A(A1,A2) — R encodes the cost of predicting Ag if
A; were correct. As we tackle object (not instance)
detection, we need to handle the case of multiple ob-
jects in an image. Therefore the standard VOC loss
is extended to sets of bounding boxes, noting that it
depends on the entire training annotations Y:2

— + = 1—max area(B(A) N B(\:))
A(A) = AATA) =1 ey area(B(\) U B(\;))

with bounding box B()\). This definition exploits the
fact that during training the first argument is always
a positive example.

2.2. Multi-Task Decomposition

The previous section’s formulation suggests one rank-
ing function for all possible sets of bounding boxes.
Let us consider the two extremes of such sets. At one

%see (Lehmann et al., 2011) for details
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Figure 2. Precision-recall curves for our method (b&r) with 400 proposals of (Alexe et al., 2010) (wiao) scored with task
T classifier of our method (on classes horse,car). (wiao) provides high recall (right end of red curve) which makes it a
good approximation to sliding window. Our method compares well and even improves over the baseline in terms of AP.

Drop in AP is mainly due to missing recall (e.g., dog).

end, the initial set represent the entire image and all
possible sub-windows. Scoring this set is the task of
image classification. The other extreme is a hypothe-
ses set with only one instance, corresponding to scoring
a single bounding box. This is an object recognition
problem. Both of course are related, but note the dif-
ference in the tasks: the first set should have a high
score if it contains an object, the latter if it is centered
on the object. This suggest that these tasks are better
solved separately but combined in a joint objective.
For example the first task could benefit from differ-
ent image features such as the gist of a scene (Oliva
& Torralba, 2001), while the latter could make use of
object specific features (Oliva & Torralba, 2001; Dalal
& Triggs, 2005; Lowe, 2004).

2.3. Multitask Learning Problem

We implement the aforementioned intuition in the
problem by decomposing the to be learned function
into different regimes, depending on the size of the
bounding box set to be scored. We define the size of a
hypothesis set as
T—x Y-—

Al = —=x

S

Y X (logs—log s) x (logT—logr) (4)

and discretize the input set sizes log(|A|) uniformly
into T different tasks to account for the exponen-
tial decay (due to splitting scheme). With ¢(A) —
{1,2,...,T} we denote the task mapping that as-
signs the input to the corresponding function. For
each task separately we have a function of the form
J(A) = (wq(ay, P(A)) 4 bg(a) With per-task weight vec-
tors w; and bias terms b;. In the experiment we will
use kernelized version of the function. It turns out that
with fixed function ¢ the original problem (2) can be
equivalently decomposed into the following T convex

optimization problems

min
we,bt,§20
<wt, (I)(A;_» + bt

(we, @(A)) + by

Jwel|> +C 325 & (5)
> =& VAT eLT, q(A))=t
< —A(A) VAEL\ LT, ¢(A)=t

that uses only examples from one given task ¢.We
solve the problem (6) in sequential order using de-
layed constraint generation and a modified version of
SVMstruet (Tsochantaridis et al., 2005). Both for test-
time as well as for loss-augmented inference the search
procedure is applied. During learning “positive” hy-
pothesis sets A} are created using a “ground-truth”
detector making use of the annotated bounding boxes
for the training set.

3. Experiments

To show the benefit of the search based inference
we chose to use the kernelized version only, since
non-linear kernel classifiers have been perceived as
being to costly to directly be applicable for ob-
ject detection. We use a RBF-y?-kernel k(u,v) =

_ (ug—vy)?
exp( ’721 u;+v; )

Dataset and Experimental Setup We perform
experiments on the VOC’07 dataset (Everingham
et al.) consisting of 20 classes and about 10k images.
Performance is measured using the official average pre-
cision (AP) score function. The hyper-parameter C
is chosen by cross-validation on the train (val) data
splits. As features we resort to rgb-SIFT descriptors
(using the code of (van de Sande et al., 2010)) being
extracted on a dense grid at multiple scales. Using a
standard pyramid histogram representation this yields
a 2100D feature vector. For hypothesis sets we use the
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Table 1. Average precision results on VOC’07. T1,T6: the influence of using 1 or 6 tasks, evaluated on split val. The
second group shows the final evaluation on trainval/test-split. Branch&rank (bé&r) uses 6 tasks and the C' value from T6.
The performance is compared to 400 “what is an object” proposals (wiao), the state-of-the-art detector (dt) and the best
result in the challenge (v7). The average number of classifier calls (#f) at prec=recall shows the efficiency of (b&r).
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Figure 3. Iterations till detection versus object detection score for classes Horse, Car, and Dog. The heat map represents
the joint (score—iteration) density (bright indicating high density) that is estimated from all detections (reported by our
final system); the blue circles denote the true positive detections only. Our method uses less than 100 iterations on average
(cyan), about 40 at precision=recall (magenta), and sometimes only 20.

image features computed on the union of the bounding
boxes it contains. A combination of more and diverse
features is likely to improve performance, we chose a
simpler method to demonstrate the algorithmic prop-
erties of the proposed method.

Detection Results We first report the detection re-
sults achieved on this dataset. We compare the AP of
our branch&rank (b&r) approach with a state-of-the-
art detector (Felzenszwalb et al., 2008) (dt) as well as
the best (per category) results reported in the chal-
lenge (Everingham et al.) (v7).

Table 1 shows that our scores are sometimes higher
(dtable,horse), lower (e.g. bicyc,boat,bus,car), or in
between (e.g. cat,dog). This is the ranking we have
expected using only a single un-tuned image descrip-
tor. The work by (Vedaldi et al., 2009) convincingly
demonstrated that combining multiple complementary
features significantly improves detection quality and
we expect the same gain would be achieved here.

Quantifying the search error The next experi-
ment aims to empirically quantify the search error
that is incurred because the test time inference prob-
lem is approximate. The golden standard to com-

pare against would be sliding windows: evaluate every
possible bounding box. As this is infeasible, we use
a proposal-verification algorithm (Alexe et al., 2010)
that generates candidate regions to evaluate the clas-
sifier on. In accordance to (Alexe et al., 2010) we find
that this is indeed a good approximation to exhaustive
search and yields high recall rates (right most point of
the red lines in Fig 2). We fix the computational bud-
get to 400 function calls for both the baseline and the
search-based inference. Thus we score the top 400 pro-
posals using the learned function for task T' (wiao) and
compare the performance to running 200 iterations of
our algorithm (b&r). The results are shown in Table 1
and comparing (wiao) and (b&r) we notice that the
results are indeed very similar.

Detector Efficiency We measure the efficiency in
number of classifier evaluations (since the classifier can
be sped up using standard techniques such as cas-
cades). Fig. 3 plots the number of iterations till a de-
tection is reported as a function of the detection score
and in Tab. 1 the line #f shows the average number
of calls for all categories. Our system detects most
objects rather quickly (in usually less than 50 itera-
tions) especially the high scoring ones but the average
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number of iterations is also quite low. This finding
reinforces our conjecture from Sec.2: the better the
ranking, the faster the detector. Higher values of #f
are those with lower scores in Tab. 1.

Multi-Task comparison Finally we evaluate the
influence of the multi-task ranking we proposed. To
this end we train two detectors, one making use of
T = 6 different tasks (T6) and one that is not divided
into different tasks, setting T = 1 (T1). Hyperpa-
rameters are optimized individually. The results are
reported in Table 1 (lines T1,T6). We observe a con-
sistent improvement of the multi-task decomposition
(T6) over the holistic classifier (T1). From this we
conclude that the task dependent decomposition is in-
deed a crucial component for good performance.

4. Conclusion

This work combines a best-first search based inference
with a multi-task decomposition for the task of object
detection. This strategy enables us to use non-linear
classifiers throughout the system. This is a crucial
step towards efficient object detection, since it allows
to model the intra-class variations with stronger, but
potentially more costly classifiers. It operates using a
priority queue and thus avoids search space pruning.

The system could be improved by using complemen-
tary image descriptors, factoring in feature compu-
tation time, or learning the task-decomposition. In
addition to using the structure of the search space,
one could also use cascades to speed the classifier calls
themselves.
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