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ABSTRACT

This paper presents a convolutional layer that is able toge® sparse input fea-
tures. As an example, for image recognition problems tHmsnal an efficient
filtering of signals that do not lie on a dense grid (like pigekition), but of more
general features (such as color values). The presentedthiganakes use of the
permutohedral lattice data structure. The permutohealtadé was introduced to
efficiently implement a bilateral filter, a commonly used @egrocessing opera-
tion. Its use allows for a generalization of the convolutigpe found in current
(spatial) convolutional network architectures.

1 INTRODUCTION

In the domain of image recognition, the convolutional lagea CNN today is almost exclusively
associated with a spatial convolution in the image domairthis work we will take a more signal
theoretic viewpoint of the convolutional operation andggm an algorithm that allows to process
also sparse input data. This work is inspired by the use ofigpdata structures (Adams et al.,
2010) for bilateral filters (Aurich & Weule, 1995; Smith & Big,1997] Tomasi & Roberto, 1998)
and generalizes it for the use of convolutional architexgur

Although the approach presented here is more general, tloevfiog two scenarios are instructive.
Consider that at training time we have access to full reemiutages to train a classifier. At test
time only a random number of pixels from the test image islaldd. In other words, we sample
the signal differently during training and test time. Foraditional CNN this would require a pre-
processing step, for example to map from subsets of pixelgiEnse grid that is the image. In our
view there is no change, it is not required that we have a dgrideand access to all pixels of the
image. Thatis the integration domain does not change. $lisé example of sparsity, here we deal
with a set of pixels, whose values are RGB and features aiggrosSimilarly, color information
can be used to define the filtering operation as well. One caisela convolution with a domain
respecting coloand location information (or color alone). One view from the igeaprocessing
community is that of amdge-aware filter, the filter will be adaptive to the color and/or gradief
the image. RGB values do not lie on a regular dense grid, fitvera direct expansion of the spatial
convolution is not applicable.

This approach falls into line with the view on encoding ingats (Mallat, 2012). It is possible to
encode our knowledge invariants that we have about the d#ttiatlve new way of looking at the
data. Encoded in a spatial convolution is the prior knowéedigout translation invariance. How to
encode roation invariance, how similarity in color spacetk view we take here these are simply
convolutions over different domains. A grid based comvolutannot easily be used to work with
the sparse data (an interpolation might be needed) but ttmeupehedral lattice provides the right
space and allows efficient implementations. Therefore tilime is comparable to the ones of
spatial convolutions, depending on the size of the invasigminclude and can simply be used as a
replacement of the traditional layers.

2 PERMUTOHEDRAL LATTICE CONVOLUTION

We propose a convolution operation of-alimensional input space that entirely works on a lattice.
Input data is a tupléf;,v;) of feature locations; € R¢ and corresponding signal values €
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Figure 1: The permutohedral convolution consists of thtepss first the samples are splatted onto
the lattice, then a convolution operates on the lattice idengsig a margin ok = 2 neighbors of a
node, and finally the result of the convolution is transfodrback to the output samples.

R. Importantly, this does not assume the feature locatjgrie be sampled on a regular grid, for
examplef; can be position and RGB value. We then map the input signalregalar structure,
the so-called permutohedral lattice. A convolution theerapes on the constructed lattice and the
result is mapped back to the output space. Hence, the epiraton consists of three stages (see
fig.[1): splat (the mapping to the lattice spacepnvolution andsdlice (the mapping back from the
lattice). This strategy has already been used to implenastiGaussian filtering (Paris & Durand,
2009; Adams et al., 2010; 2009). Here we generalize it tdraryi convolutions.

The permutohedral lattice is the result of the projectiothefsetZ¢*! onto a plane defined by its
orthogonal vectofl. € R¥*!. Thisd dimensional plane is embedded ifkd!. The lattice points
tessellate the subspace with regular cells. Given a paint the embedding space, it is efficient to
find the enclosing simplex of the projection onto the plane.Will represent a sparse set of points
from R by a sparse set of simplex corners in the lattice. Imporgatite number of corners does
not grow exponentially with the dimensiehas it would for an axis-align simplex representation.
We continue to describe the different parts of the permutcdieonvolution.

The splat and slice operations take the role of an interjpoldtetween the different signal repre-
sentations. All input samples that belong to a cell adjatemattice pointj are summed up and
weighted with the barycentric coordinates to calculatevilleel; = 3, ;) bi,jvi. This is the
splatting operation. The barycentric coordinatigs depend on both the corner poiptand the
feature locationf;. The reverse operation slice finds an output valjdy using its barycentric
coordinates inside the lattice simplex and sums over theeequointsv), = 3 1) bk}

The convolution is then performed on the permutohedratkatit uses a convolution kernel,, to
computel;-, = Z(n_’j)eN(j,) wyl;. The convolution kerned,, is problem specific and its domain
is restricted to the set of neighboring lattice poin{$;). For bilateral filters, this is set to be a
Gaussian filter, here we learn the kernel values using bemggation.

The size of the neighborhood takes a similar role as the filr (spatial extent) of the grid-based
CNN. A transitional convolutional kernel which considersampled points to either side h@s +
1)? € O(s%) parameters. A comparable filter on the permutohedral éattith as neighborhood
has(s + 1) — s4+1 € O(s?) elements.

3 SPARSECNNS AND ENCODING INVARIANTS

The permutohedral convolution can be used as a new buildanl in a CNN architecture. We will
omit the derivation of the gradients for the filter elementthwespect to the output of such a new
layer due to space constraints. We will discuss two possipfdication scenarios.

First, as mentioned before we are free to change the samlitig input signal of a lattice-based

convolution. The choice of the sampling is problem speciftissing measurements or domain
specific sampling techniques that gather more informatidnighly discriminant areas are only two

possible scenarios. Furthermore, as we will show in our exyemnts the method is robust in cases
where train-time sampling and test-time sampling do natcde.



Under review as a workshop contribution at ICLR 2015

LeNet Permutohedral Subsample (100%) Subsample (60%) aSuydbs (20%)
0.9919 0.9903 0.9745 0.9537 0.8689

Table 1: Classification accuracy of the conducted experis@mpared to the LeNet (LeCun et al.,
1998) implementation that is part of the caffe implementailia et al., 2014).

Second, the proposed method provides a tool to encode @wilitlata invariances in a principled
way. A common technique to include domain knowledge is tifigigllly augment the training set
with deformations that leave the output signal invarianthsas translations, rotations, or nosiy
versions.

A feature mapping@ is invariant with respect to a transformatiérand a signab if ®(v) ~ ®(vy,).

In the case wheré belongs to a set of translations a possible invariant featithe convolution
with a window functionw (given its support has the right siz@)v, s) = [w(t)v(s — t)dt. The
same idea can be applied to the more general case and agaitatia a mean with the help of a
window function:

®(v,L) = /w(M)v(M’lL)dM.

We can use the permutohedral convolution to encode invaegalike rotation and translation. Ap-
proximating the above integral by a finite sum and usingdatpoints as integration samples we
arrive at® (v, L) ~ >\ vice: a7 Warv(M ~1L). We further approximate(M ~! L) with look-up at a
lattice point location.

Consider the case of rotation and translation invarianaereNhtuitively, we stack rotated versions
of the input images onto each other ir3 @imensional space 2 dimensions for the location of a
sample and dimension for the rotation of the image. A grid-based coatioh would not work
here because the rotated image points might not coincide avigrid anymore. Filtering in the
permutohedral space naturally respects the augmenteadegtace.

4 EXPERIMENTS

We take a reference implementation of LeNet (LeCun et al98)%hat is part of the caffe
project (Jia et al., 2014) on the MNIST dataset as a startaigtfor the following experiments.
The permutohedral convolutional layer is also implemeimetlis framework.

We first compare the LeNet in terms of test-time accuracy whstituting only the first of the
convolutional layers with a (position only) permutohedagier and leave the rest identical. Taldle 1
shows that a similar performance is achieved, so it seemefledibility is not lost.

One of the strengths of the proposed method is that it doedey®nd on a regular grid sampling
as the tranditional convolution operators. We highligl¢ fieature with the following experiment.
We randomly sample continuous points in the input image thise interpolated values as signal
and continuous positions as features. This mimicks sulpbagiof a high-dimensional signal, in-
terestingly, we could train models with a different amouhsob-sampling than at test time. The
permutohedral representation is robust with respect ssiarse input signal. Tatble 1 shows exper-
iments with different signal degradation levels.

In the future we will investigate the change in classificati@rformance with the new layer inside
a network architecture that directly models domain knogéed

5 CONCLUSION

This paper presents a generalization of the convolutiopalation to sparse input signals. We
envision many consequences of this work. Consider sighatsare naturally represented as mea-
surements instead of images, like MRT scan readings. Thauyiehedral lattice filtering avoids

the pre-processing assembling operation into a dense jntag@ossible to work on the measured
sparse signal directly. Another promising use of this filseto encode scale invariance, typically
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this is encoded by presenting multiple scaled versions ahage to several branches of a network.
The convolution presented here can be defined on the consmamge of image scales without a
finite subselection. In summary, this algorithm allows to@ate prior knowledge about the observed
signal to define the domain of the convolution. The typicailti filter of CNNs is a particular type
of prior knowledge, we generalize this to sparse signals.
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