
SUBMITTED to ACM MULTIMEDIA 2016 OPEN SOURCE SOFTWARE COMPETITION

c© Christoph Lassner, Daniel Kappler, Martin Kiefel, Peter Gehler, 2016. This is the author’s version of the work. It
is posted here for your personal use. Not for redistribution. The definitive version was published in Proceedings of the
ACM Multimedia 2016, http://dx.doi.org/10.1145/2964284.2973803 .

Barrista – Caffe Well-Served

Christoph Lassner1,3
classner@tue.mpg.de

Bernstein Center for
Comp. Neuroscience1

Otfried-Müller-Str. 25
Tübingen, Germany

Daniel Kappler2
dkappler@tue.mpg.de

Martin Kiefel1,3
mkiefel@tue.mpg.de

MPI for Intelligent Systems,
Autonomous Motion Dep.2

Paul-Ehrlich-Str. 15
Tübingen, Germany

Peter Gehler1,3
pgehler@tue.mpg.de

MPI for Intelligent Systems,
Perceiving Systems Dep.3

Spemannstr. 41
Tübingen, Germany

ABSTRACT
The caffe framework is one of the leading deep learning tool-
boxes in the machine learning and computer vision commu-
nity. While it offers efficiency and configurability, it falls
short of a full interface to Python. With increasingly in-
volved procedures for training deep networks and reaching
depths of hundreds of layers, creating configuration files and
keeping them consistent becomes an error prone process.

We introduce the barrista framework, offering full, pythonic
control over caffe. It separates responsibilities and offers
code to solve frequently occurring tasks for pre-processing,
training and model inspection. It is compatible to all caffe
versions since mid 2015 and can import and export .prototxt
files.

Examples are included, e.g., a deep residual network im-
plemented in only 172 lines (for arbitrary depths), compar-
ing to 2320 lines in the official implementation for the equiv-
alent model.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Applications—Computer Vi-
sion; D.2.2 [Software Engineering]: Design Tools and
Techniques—Software libraries; I.5.1 [Pattern Recogni-
tion]: Models—Neural Nets

Keywords
Open Source; Computer Vision; Machine Learning; Neural
Networks; Deep learning; caffe

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15 - 19, 2016, Amsterdam, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2973803

1. INTRODUCTION
Deep learning is one of the biggest success cases of ma-

chine learning in the last years. For problems like image
classifications, previously considered one of the most chal-
lenging problems, deep learning has led to solutions that
surpassed human performance. The tremendous commer-
cial and academic success spurred development of several
software packages. For the computer vision community, the
caffe [7] framework is popular and frequently used. It is
well-tested with many custom layer implementations and
published models.

caffe does provide Python bindings for the core features,
however the main workflow relies on Google protocol buffers1

(which we will abbreviate to ‘protobuf’) for configuration,
network design and serialization. This has been a prag-
matic solution for network layouts so far, but new, increas-
ingly complex, training strategies and networks with mul-
tiple hundreds of layers [4, 5] push this architecture to its
limits.

We present the barrista framework, which provides a more
powerful, programmatic interface, and propose solutions and
insights that may be of general interest. Furthermore, we
strongly advocate the concept of callbacks (which we refer
to as ‘monitors’ throughout the paper, due to the moni-
tor software design pattern). We use monitors as an easy-
to-write and easy-to-combine tool to create data loaders,
pre-processing, hyperparameter modification, logging, post-
processing and visualization.

The features of barrista can be summarized as follows:

• The barrista framework provides full Python access
to all caffe functionalities. Multi-GPU training is not
yet available, but in the final development stage. Net-
works can be programmatically created and edited in
a convenient way.

• Protobuf object introspection is at the core of the bar-
rista library. It enables almost automatic parsing of
the basic caffe interface and guarantees full compatibil-
ity and consistency with the used version of caffe. This
includes custom-written layers and their parameters,
which need to be referenced just by their name. All
layer implementation is then inferred automatically.

• We maintain full compatibility with caffe models. By
using the internal protobuf representation, it is possi-
ble to load and save all models and prototxt files caffe
can read and write.

1https://developers.google.com/protocol-buffers/

http://dx.doi.org/10.1145/2964284.2973803
http://dx.doi.org/10.1145/2964284.2973803
https://developers.google.com/protocol-buffers/

• barrista provides a monitor interface with many exist-
ing monitors for pre-processing, post-processing, data
augmentation, visualization, training and model in-
spection. Many of them can be executed in parallel
to the network forward and backward pass to make
the execution efficient.

• This provides a principled separation of responsibili-
ties for steps such as data-preparation, data-feedback
(i.e., incorporating training results to influence further
training for, e.g., active learning) and visualization.

2. RELATED WORK
A full overview of deep learning software is out of the

scope of this paper. We restrict the discussion to the most
prominent frameworks and interface packages targeting the
Python language.

The Theano package [11] with its three interface add-ons
Lasagne [3], Keras2 and blocks [13] is similar to caffe and
barrista. Theano is a more general machine learning soft-
ware compared to caffe. Therefore, the wrappers are con-
venient for the specific use case of deep learning. Whereas
Lasagne keeps a focus on being a lightweight and close wrap-
per around Theano, Keras aims for more generality and
offers a backend for Tensorflow [1] as well, which will be
discussed in the next paragraph. Keras includes a conve-
nient fitting method, but does not separate responsibilities
as clearly as the framework we propose. It offers the possibil-
ity to use callbacks, but these can not influence the training
or the provided data as deeply as barrista and are not ex-
ecuted in parallel. Lasagne is a lightweight wrapper that
focuses solely on Theano’s deep learning components. It re-
quires the user to implement a training loop including pre-
processing and monitoring. blocks is very similar to barrista
in its aims and offers a callback concept with its Extensions.

Tensorflow [1] is Google’s open source deep learning
framework and subject to rapid changes. This framework
may emerge as a successor to caffe. Currently (v0.9), does
not offer high level training and pre-processing routines.
There is a thriving and competitive infrastructure ecosys-
tem growing around it with no mature and clearly leading
framework yet.

Mxnet [2] provides APIs for several languages, including
Python. It offers high-level training methods and two sep-
arate concepts for callbacks. Plain callbacks do not have
access to the network’s gradient in contrast to a specific
monitor object. However, only one such object can be used
for training. Both callback types are not executed in parallel
and can not be used for data-preprocessing.

Chainer [12] fully leverages the Python software stack
and is designed for easy modification. This does not extend
over the course of training methods, probably because it is
relatively easy to implement these methods. However, re-
implementation leads to creating the same pre-processing
and optimization code repeatedly, which is what we address
with our callback stack.

Neon3 relies on the Python stack with the focus on run-
time. It provides a comprehensive callback system, but
not for parallel execution. While Neon is fast, its com-
mercial distribution model offers parts as premium content.
With open source alternatives available, this software has
not found widespread use in the research community.
2http://keras.io/
3https://github.com/NervanaSystems/neon

stage: fit stage: predict

phase: train phase: test phase: test

Figure 1: Usage of stages and phases by the ‘Net’ object.
If available, the ‘predict’ stage is used automatically by the
‘predict’ function.

3. CONCEPTS AND DESIGN

3.1 Separation of responsibilities
One of the core ideas of the library design is the separation

of responsibilities:

The user is responsible for preparing the data. This action
is highly dataset specific and can hardly be generalized.

The library offers data augmentation, solver setup, log-
ging, training and prediction. Data augmentation meth-
ods (like rotation, flipping) can be shared across learn-
ing tasks, therefore this responsibility can be moved to
the deep learning library.

We believe that a library should solve repetitive tasks for
the user out-of-the-box, but remain configurable. As in the
popular scikit-learn4 package, barrista offers many default
options with sensible values that can be overridden. For
example, input data can be passed as a list to the ‘fit’ or
‘predict’ methods of a model, but if the data does not fit
into memory, it is straightforward to extend the Cycling-
DataMonitor to process a dataset chunkwise.

3.2 Representation
The description of a network is captured in a NetSpec-

ification object. It can be programmatically constructed,
altered, converted to and from a protobuf, the lingua franca
for caffe. It describes a network layout in all possible stages
and phases and is independent of a trained model.

To use a network model, its description can be instan-
tiated to obtain a Net object. A Net has parameters and
can be fitted to data or used to make predictions. If the
network description includes a distinction between the ‘fit’
and ‘predict’ phases, then the corresponding architectures
are automatically generated and used (see Fig. 1).

In contrast to other frameworks, the Solver is represented
as a stateful entity, which reflects the underlying caffe struc-
ture for optimization methods such as Adam [8]. Further-
more, this has the advantage that the object can be serial-
ized correctly. All solvers implemented in caffe are encap-
sulated with parameter checks.

3.3 Monitoring
We propose a powerful monitoring system with nearly full

control over the training process. Our experience is that
this offers an easy way to experiment with different training
strategies. The monitors can access and modify both, the
network and solver. Monitors for data loading and augmen-
tation can be combined arbitrarily, to quickly adapt to the
specific training needs without having to rewrite and test
the code.

4http://scikit-learn.org

http://keras.io/
https://github.com/NervanaSystems/neon
http://scikit-learn.org

Pool-Worker

Main process

pre-batch (n+1)

forward-backward (n) post-batch (n) copy

…
Neural Network blobs

Shared memory blobs

…

Time

P
ro

ce
ss

 /
R

es
ou

rc
e

Memory

Figure 2: Parallel callback processing pipeline. Solid arrows indicate control flow, dashed lines resource access. The duration
of the ‘forward-backward’ and ‘pre-batch’ operation strongly depends on network layout/pre-processing steps, hence the length
of the boxes is not necessarily proportional to execution time. Memory is only allocated once at the beginning of training and
does not change over time (the blobs have limited extent only for easier visualization).

4. IMPLEMENTATION

4.1 Protobuf object introspection
Python offers full object introspection abilities: all prop-

erties can be queried and their name and type examined.
We use this feature to analyze the caffe-generated proto-
buf object. Exploiting the knowledge about caffe’s naming
convention, we can infer significant parts of the interface
automatically.

This allows us to work with upstream and custom defined
layers. The only additional information which must be pro-
vided is the relationship between a layer and its parameters,
since this is not encoded in the protobuf specification. It is
sufficient to specify layer and parameter names, the rest is
inferred from barrista.

With this architecture, we are able to elegantly avoid the
maintenance overhead for wrapping an evolving library. Ad-
ditionally, we keep the additional effort for new layer defi-
nitions as low as possible. In the core caffe library, adding
new layers requires changes in several places.

4.2 Monitor implementation
We use an inheritance-based Signal/Slot design pattern

implementation to create the monitors. This makes (1) cre-
ation of new signals as well as (2) creation of new monitors
easy and preserves simplicity and separation of the code.
The monitors receive their parameters solely through a dic-
tionary. This keeps the interface flexible and extensible and
enables state modification.

4.3 Parallel monitor execution
True parallel threaded execution in one process is inher-

ently difficult in Python due to the global interpreter lock.
However, data loading can be time-consuming and slow down
the training. The caffe data loading facilities can be used
like any other layer, additionally we provide parallel data
layers that are executed in a true parallel context. To make
this functionality available on all platforms, we rely on the
Python multiprocessing module to create an additional worker
process. To avoid interprocess communication overhead, we
use shared memory with locks for data transfer. Any moni-
tor implementing the ParallelDataMonitor interface will be
executed in parallel, which is useful for expensive pre-processing
tasks. A control flow visualization is given in Fig. 2.

Exploiting Python’s duck typing, we create a dummy Net

object that implements the basic interface of the Net with
its memory pointing to shared memory with the main pro-
cess. Thus, the data monitors executed in parallel can be
used unchanged for serial execution, e.g., for debugging. Af-
ter parallel execution, the main process copies the shared
memory to the original Net object, an operation that usu-
ally takes less than 1ms.

4.4 Visualization
With visualization monitors it is possible to create plots

in regular intervals and create movies of filter evolution. We
include a basic set of monitors. This includes (1) activa-
tion, (2) gradient histogram, (3) gradient magnitude and
(4) loss visualization; all of which allow to keep a close view
of the network during training to diagnose obstacles for the
optimizer, e.g., vanishing gradients in very deep architec-
tures [14]. Adding more involved visualizations such as the
‘guided backprop’ visualization [10] can easily be integrated
using a monitor.

4.5 Examples
We include three self-contained examples with the library:

an overview over the most important functions, the classi-
cal MNIST training example with a three layer CNN, and
an implementation of a state-of-the art residual network for
CIFAR10 [9, 4]. The latter two are complete setups that can
directly be adapted for new training scenarios. The folders
come with ‘data.py’, ‘train.py’, ‘test.py’, ‘visualize.py’ and
a model folder with the proposed model file. All the files are
executable and highlight one aspect of the setup.

4.6 Quality assurance
To provide high quality code, we follow best practices.

With a public CI server that checks primary (tests) and
secondary (style) quality of the code, we assure that the
library is usable and bugs are detected before a code release.

Monitoring the test coverage at the same time (currently
more than 94% for the non-user-interface functions of the
library; the UI can not be tested on the headless CI server),
we make sure that no important parts remain untested.
All parts of the library are covered with documentation.
Python 3 compatibility is implemented, but is currently not
maintainable due to the lacking compatibility of the core
caffe framework.

(a) (b) (c) (d)

Figure 3: Example visualizations. (a) Human pose estimation and semantic segmentation, (b) intrinsic image reflection
component, (c) bilateral feature space with x, y, r, g, b features of an image [6] (non-standard caffe layer), (d) activations from
the last layer of a deep residual network on CIFAR10 [9] using visualization monitors during training.

5. USAGE SCENARIOS
The library wraps the entire caffe functionality, currently

with the exception of multi-GPU support (which can be
added by a minimal C++ patch to caffe). barrista can be
used for all applications of caffe. We used it successfully
for several applications: human pose estimation, semantic
segmentation, image filtering, image classification, charac-
ter recognition, material classification, intrinsic image de-
composition as well as robotic grasp pose prediction. Some
example visualizations are shown in Fig. 3. With this wide
array of applications, we are confident that barrista can de-
liver a high level of convenience for a large user base.

LSTM support in caffe is currently under development
and discussion. It is likely to be integrated in the main
framework. Since the underlying representation remains tied
to protobuf, only minimal changes should be required to
make these features available in barrista.

6. AVAILABILITY AND CONCLUSION
The source code is available under the MIT license from

Github at https://github.com/classner/barrista. It is cur-
rently necessary to apply a C++ patch to caffe to make
barrista work. A pull request for the required changes to the
master branch of caffe is pending (#3629). The change is
of general interest, and once accepted we will make barrista
available as a PyPi project. In the meantime we provide a
patched caffe version as a submodule of the project.

barrista is highly flexible and aims to bridge the gap be-
tween performance, convenience and continuity. We are con-
fident that it prove useful in many applications and con-
tribute to an easier usage of caffe by reducing development
time for both, beginners and experts of deep learning.

We thank Yangqing Jia and the BVLC vision group for
creating and maintaining caffe.

7. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems. http://tensorflow.org/,
2015.

[2] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A
flexible and efficient machine learning library for
heterogeneous distributed systems.
http://mxnet.rtfd.org, 2015.

[3] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K.
Sønderby, D. Nouri, D. Maturana, M. Thoma,
E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman,
diogo149, B. McFee, H. Weideman, takacsg84,
peterderivaz, Jon, instagibbs, K. Rasul, CongLiu,
Britefury, and J. Degrave. Lasagne: First release.
http://dx.doi.org/10.5281/zenodo.27878, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Identity
mappings in deep residual networks. arXiv preprint
arXiv:1603.05027, 2016.

[6] V. Jampani, M. Kiefel, and P. V. Gehler. Learning
sparse high dimensional filters: Image filtering, dense
crfs and bilateral neural networks. In CVPR, 2016.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[8] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1312.6980, abs/1412.6980, 2014.

[9] A. Krizhevsky. Learning Multiple Layers of Features
from Tiny Images. Master’s thesis.

[10] J. T. Springenberg, A. Dosovitskiy, T. Brox, and
M. A. Riedmiller. Striving for simplicity: The all
convolutional net. arXiv preprint arXiv:1412.6806,
abs/1412.6806, 2014.

[11] Theano Development Team. Theano: A Python
framework for fast computation of mathematical
expressions. arXiv preprint arXiv:1605.02688, 2016.

[12] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer:
a next-generation open source framework for deep
learning. In Proc. of the Workshop on Machine
Learning Systems (LearningSys) of NIPS, 2015.

[13] B. van Merriënboer, D. Bahdanau, V. Dumoulin,
D. Serdyuk, D. Warde-Farley, J. Chorowski, and
Y. Bengio. Blocks and fuel: Frameworks for deep
learning. arXiv preprint arXiv:1506.00619, 2015.

[14] S.-E. Wei, V. Ramakrishna, T. Kanade, and
Y. Sheikh. Convolutional pose machines. In CVPR,
2016.

https://github.com/classner/barrista
http://tensorflow.org/
http://mxnet.rtfd.org
http://dx.doi.org/10.5281/zenodo.27878

